SAN JOAQUIN VALLEY CLEAN CITIES COALITION

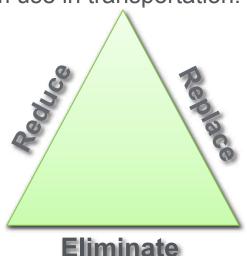
Community Readiness for Electric-Drive Vehicles

SEEC Best Practices Forum, July 19, 2012 LAX Crowne Plaza

Linda Urata

SJVCCC Coordinator, volunteer iwantcleanair@aim.com Kern Energy Watch Coordinator, Kern COG lurata@kerncog.org

About Clean Cities


Mission

To advance the energy, economic, and environmental security of the United States by supporting local decisions to reduce petroleum use in transportation.

Goal

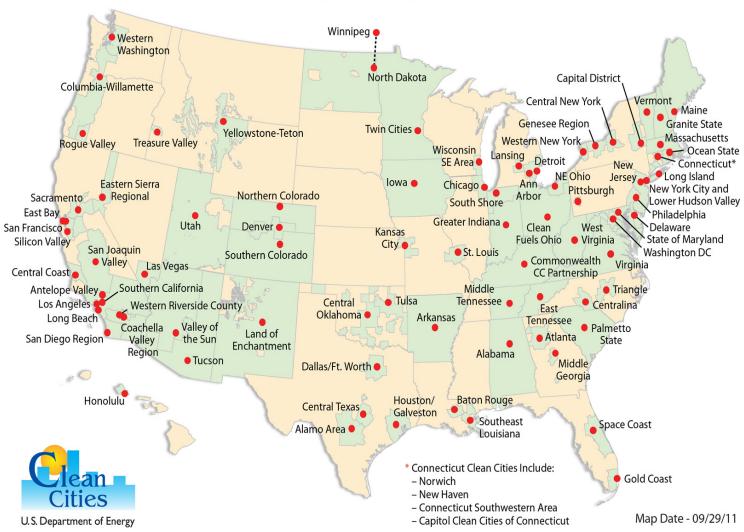
Reduce petroleum use by 2.5 billion gallons per year

- Replacement
- Reduction
- Elimination

Accomplishments

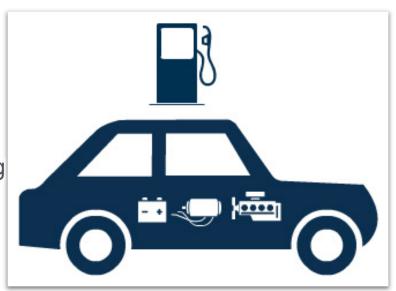
- Saved nearly 3 billion gallons of petroleum since 1993
- Put more than 775,000 alternative fuel vehicles (AFVs) on the road
- Installed more than 6,600 alternative fueling stations

Electric-Drive Vehicles


- Hybrid Electric Vehicles (HEVs)
- Plug-In Hybrid Electric Vehicles (PHEVs)
- All-Electric Vehicles (EVs)

About Clean Cities

Clean Cities Coalitions

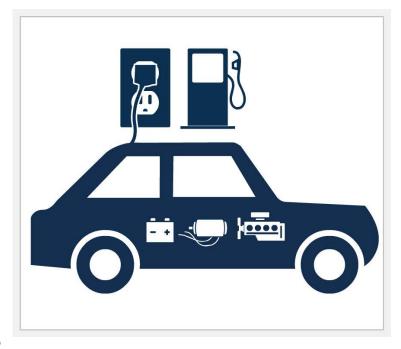


Basics: Hybrid Electric Vehicles (HEVs)

Powered by Engine and Electric Motor

- Internal combustion engine uses alternative or conventional fuel
- Battery charged by regenerative braking and engine
- Power from electric motor allows smaller engine and better fuel economy

Fuel-Efficient System Design


- Mild hybrid: Cannot power vehicle using electric motor alone.
- Full hybrid: More powerful electric motor, larger batteries can drive vehicle on just electric power for short distances and at low speeds.

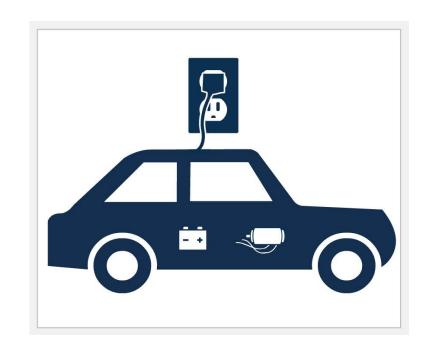
Basics: Plug-in Hybrids (PHEVs)

Powered by an Electric Motor and Engine

- Internal combustion engine uses alternative or conventional fuel
- Battery charged by outside electric power source, engine, and regenerative breaking
- During urban driving, most power comes from stored electricity

Basics: Batteries

- Energy storage systems (batteries) are essential for HEVs, PHEVs and EVs
- Reducing the cost of the battery is crucial
- Types of energy storage systems include:
 - Lithium-ion batteries
 - Nickel-metal hydride batteries
 - Lead-acid batteries
 - Lithium-polymer batteries
 - Ultracapacitors
- The battery recycling market is currently limited
- Battery swapping options are being developed



Basics: All-Electric Vehicles (EVs)

Powered by an Electric Motor

- Battery stores electrical energy that powers the motor
- Battery charged by plugging into outside electric power source
- Zero tailpipe emissions, but air pollution may be produced through electricity generation

Driving Range

- EVs can travel about 100 miles per charge, depending on the model.
- A 100-mile range is sufficient for more than 90% of all U.S. household vehicle trips.

Benefits: Hybrid Electric Vehicles

Fuel Economy: Better than similar conventional vehicles

Low Emissions: Lower than similar conventional vehicles

Fuel Cost Savings: Less expensive to operate than a conventional vehicle

Energy Security: Reduced U.S. reliance on imported petroleum

Fueling Flexibility: Fuel from gas stations

Considerations

- Purchase cost can be offset by fuel savings, tax credits, and incentives.
- Purchase prices are expected to drop (relative to conventional vehicles) by 2015.

Benefits: Plug-in Hybrid Electric Vehicles

Fuel Economy: Better than HEVs and similar conventional vehicles

Low Emissions: Lower than HEVs and similar conventional vehicles

Fuel Cost Savings: Less expensive to operate than an HEV or conventional vehicle

Energy Security: Reduce U.S. reliance on imported petroleum

Fueling Flexibility: Fuel from gas stations or charge at home or in public

Considerations

- Purchase cost can be offset by fuel savings, tax credits, and incentives.
- Public charging infrastructure is in development.
- Battery recycling and reuse options are in development.

Benefits: All-Electric Vehicles

Fuel Economy: Does not use liquid fuels

Low Emissions: Zero tailpipe emissions

Fuel Cost Savings: Less expensive to operate than conventional vehicles

Energy Security: Reduces U.S. reliance on imported petroleum

Fueling Flexibility: Can charge at home or public charging stations

Considerations

- Purchase cost can be offset by fuel savings, tax credits, and incentives.
- Public charging infrastructure is in development.
- Battery recycling and reuse options are in development.

Availability

Light-Duty Vehicles

- HEVs widely available
- PHEVs and EVs rolling out nationwide

Heavy-Duty Vehicles

- Variety of HEVs, PHEVs, and EVs available
- PHEV conversions

Neighborhood Electric Vehicles (NEVs)

- Several makes and models available
- Neighborhood commuting, light hauling, delivery, off-road service

Use: Charging Electric Drive Vehicles

EVSE Options						
	Current Type	Amperage (amps)	Voltage (V)	Kilowatts (kW)	Charging Time	Primary Use
Level 1	Alternating current (AC)	12-16 amps	120V	1.3 to 1.9 kW	2-5 miles of range per hour of charging	Residential charging
Level 2	AC	Up to 80 amps	240V	Up to 19.2 kW	10-20 miles of range per hour of charging	Residential and public charging
Level 3 (in development)	AC	To be determined	To be determined	To be determined	60-80 miles of range in less than 30 minutes	Public charging
DC Fast Charging	Direct current (DC)	Up to 200 amps	208-600V	50 to 150 kW	60-80 miles of range in less than 30 minutes	Public charging

Use: Charging at Home

- Most owners will charge vehicles at home, making Level 1 and Level 2 the primary options.
- Level 2 charging equipment now costs \$500 to \$7,000.
- Installation requires permitting and licensed contractors.

Local Government Participation

- Permitting and Inspection
- First Responders
- Government Fleets
- Planning
- Incentives
- Public Education

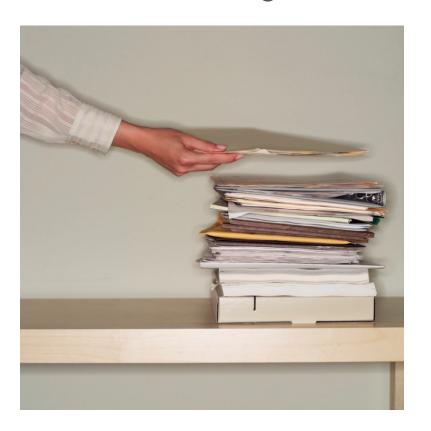
Local Governments: Permitting and Inspection

- Installation of residential and commercial EVSE
- Notification of utility
- ADA compliance
- Signage
- Multi-unit dwellings
- Best Practices

Local Governments: First Responders

- Police and Fire Department personnel
- New technologies = new challenges
- Training
 - Recognizing vehicles
 - How to approach vehicles
 - Safety what's different?

Local Governments: Government Owned Fleets



- Energy Policy Act (EPAct) 1992 covered fleets
- Policies
 - Purchasing
 - Charging
- Networking
- Funding Opportunities
 - Grants
 - Federal, State, Local Air Districts
 - Vehicles, Training, Infrastructure
 - Rebates

Local Governments: Planning

- General Plans
- SB375 Sustainable Communities Strategies
- Public Stations
- Energy Use

Local Governments: Incentives

- Preferential Parking
- Expedited permitting
- Public recognition

Fee reduction or waivers

Local Governments: Public Education

- Promote local government activities
- Partner with local agencies, utilities to host workshops
- Post resources on local government website
- Distribute brochures at local government counters
- Topics: emissions benefits, tax incentives/rebates/ grants, permitting process

US DOE Clean Cities Resources

- Research and Development
- Resources
- Training
- Conferences

Other sources:

California Air Resources Board

California Energy Commission

California Plug-in Electric Vehicle Coalition (PEVC)

California Center for Sustainable Energy

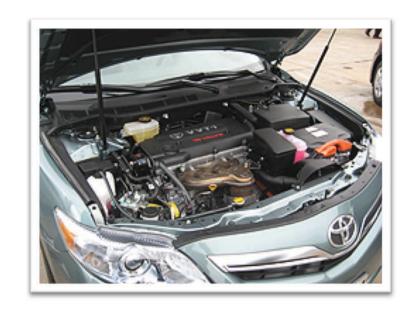
Utility companies

Use: Charging in Public

Public charging stations

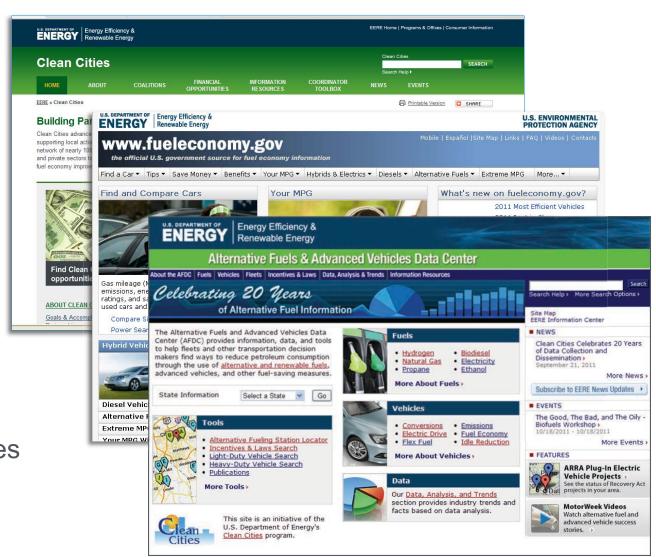
- Make EVs and PHEVs more convenient
- Increase useful range

Public charging infrastructure locations


- Shopping centers
- City parking lots
- Airports
- Hotels
- Office buildings

Use: Maintenance and Safety

- HEVs and PHEVs require slightly less maintenance than conventional vehicles
- EVs also require less maintenance than conventional vehicles
 - Battery, motor, and associated electronics don't require frequent maintenance
 - Regenerative braking reduces break wear
 - Fewer moving parts than a conventional vehicle


For More Information

Clean Cities

FuelEconomy.gov

Alternative Fuels & Advanced Vehicles Data Center

For More Information

San Joaquin Valley Clean Cities Coalition or Kern Energy Watch www.valleycleancities.com or www.kernenergywatch.com

Clean Cities

www.cleancities.energy.gov

Alternative Fuels & Advanced Vehicles Data Center (AFDC) www.afdc.energy.gov

California Plug-in Electric Vehicle Coalition (PEVC)
http://www.evcollaborative.org/toolkit

Clean Cities Coordinator Contact Information and Coalition www.afdc.energy.gov/cleancities/progs/coordinators.php

For More Information

Linda Urata

Kern Council of Governments lurata@kerncog.org 661-861-2191

San Joaquin Valley Clean Cities Coalition iwantcleanair@aim.com
661-342-8262