

## **SEEC Virtual Forum: Webinar 13**

californiaSEEC.org

September 29, 2020 | 1:00 – 2:15 PM PST

## Local Governments Leading the Way Through Resilient Microgrids



## Thank you to...

#### Our sponsors for making this series possible!



**Pacific Gas and** Electric Company<sup>®</sup>







Southern California





#### Our promotional partners for extending our reach!



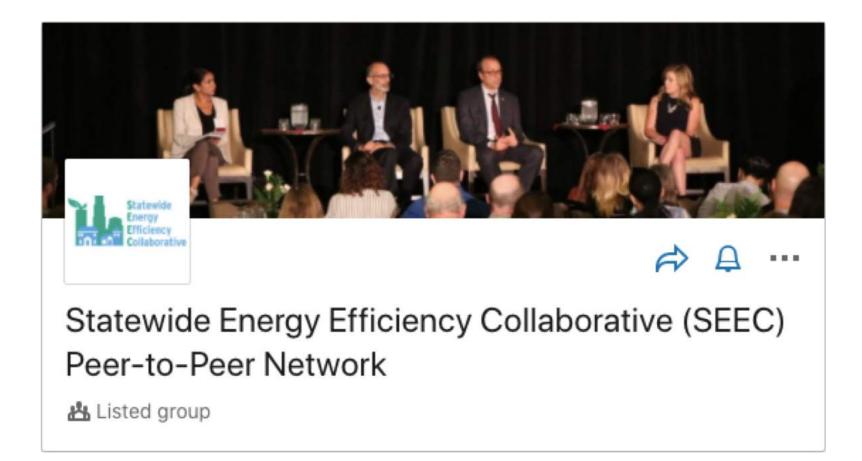
## Upcoming Events

Learn more and register at: <u>californiaseec.org/2020-forum/</u>



californiaSEEC.org

10/7 – Webinar 14 Strategic Planning for a Clean Energy Future: How to Phase, Scale & Finance Smart Cities Solutions


10/15 - Webinar 15: Keeping the Focus Local: A Conversation with SoCalREN Regional Partnerships

10/27 - Webinar 16: 2020 Virtual Beacon Award Ceremony

11/4 - Webinar 17: Mapping Energy Efficiency, Climate Planning, and Regional Partnerships

11/12 - Webinar 18: One Vision, Many Policy Paths to Local Decarbonization

## Join the SEEC Peer-to-Peer Network on LinkedIn!



Use this group to connect with other professionals, whether it be for project support or professional development reasons!

Find us at <a href="https://www.linkedin.com/groups/8956010/">https://www.linkedin.com/groups/8956010/</a>

californiaSEEC.ora

#### Q&A

- Submit questions for panelists through the Q&A module at any point during the webinar.
- Upvote questions that you are interested in hearing responses to.



#### Chat

- Engage in a dialogue with your peers share resources, case studies, and best practices
- Reach out to LGC staff if you encounter technical issues or have questions about the SEEC Forum.

californiaSEEC.org/2020-forum

## Introducing Today's Panelists







#### **Craig Lewis** Founder and Executive Director *Clean Coalition*



**Mike Grim** Sr. Programs Manager **City of Carlsbad** 



Jim Zoellick

Principal Engineer Humboldt State University, Schatz Energy Research Center

californiaSEEC.org

# Clean Coalition

# Solar Microgrids

# Unparalleled trifecta of economic, environmental, and resilience benefits

#### Craig Lewis

Executive Director Clean Coalition 650-796-2353 mobile craig@clean-coalition.org

Making Clean Local Energy Accessible Now

29 September 2020



## <u>Mission</u>

To accelerate the transition to renewable energy and a modern grid through technical, policy, and project development expertise.

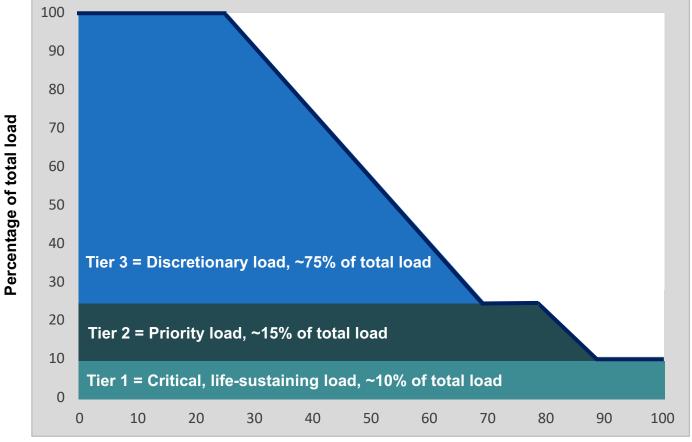
## 100% renewable energy end-game

- 25% local, interconnected within the distribution grid and facilitating resilience without dependence on the transmission grid.
- 75% remote, dependent on the transmission grid for serving loads.



## Solar Microgrid key concepts

## Value-of-resilience (VOR) depends on tier of load


- Everyone understands there is significant value to resilience provided by indefinite renewables-driven backup power, especially for the most critical loads
  - But, nobody has quantified this value of unparalleled resilience.
  - Hence, there is a substantial economic gap for renewables-driven microgrids.
- The Clean Coalition aims to establish a standardized <u>value-of-resilience</u> (VOR) for critical, priority, and discretionary loads that will help everyone understand that premiums are appropriate for indefinite renewables-driven backup power to critical loads and almost constant backup power to priority loads, which yields a configuration that delivers backup power to all loads a lot of the time
- The Clean Coalition's VOR approach ("VOR123") standardizes resilience values for three tiers of loads:
- Tier 1 are mission-critical & life-sustaining loads and warrant 100% resilience. Tier 1 loads usually represent about 10% of the total load.
- Tier 2 are priority loads that should be maintained as long as long as doing so does not threaten the ability to maintain Tier 1 loads. Tier 2 loads usually represent about 15% of the total load.
- Tier 3 are discretionary loads make up the remaining loads, usually about 75% of the total load. Maintained when doing so does not threaten Tier 1 & 2 resilience.

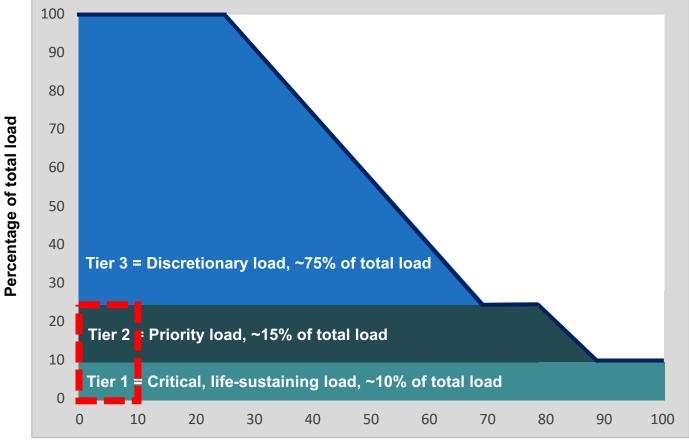


Clean /

Coalition

#### **Typical load tier resilience from a Solar Microgrid**




#### Percentage of time

Percentage of time online for Tier 1, 2, and 3 loads for a Solar Microgrid designed for the University of California Santa Barbara (UCSB) with enough solar to achieve net zero and enough energy storage capacity to hold 2 hours of the nameplate solar (200 kWh energy storage per 100 kW solar). Clean /

Coalition

#### **Diesel generators are designed for limited resilience**

## **Clean** Coalition



#### Percentage of time

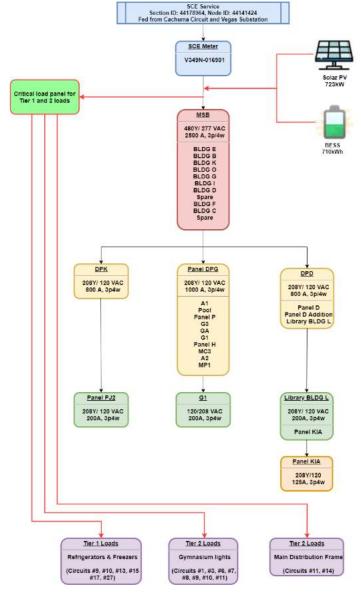
A typical diesel generator is configured to maintain 25% of the normal load for two days. f diesel fuel cannot be resupplied within two days, goodbye. This is hardly a solution for increasingly necessary long-term resilience. In California, Solar Microgrids provide a vastly superior trifecta of economic, environmental, and resilience benefits.

## VOR123 methodology yields a 25% typical adder



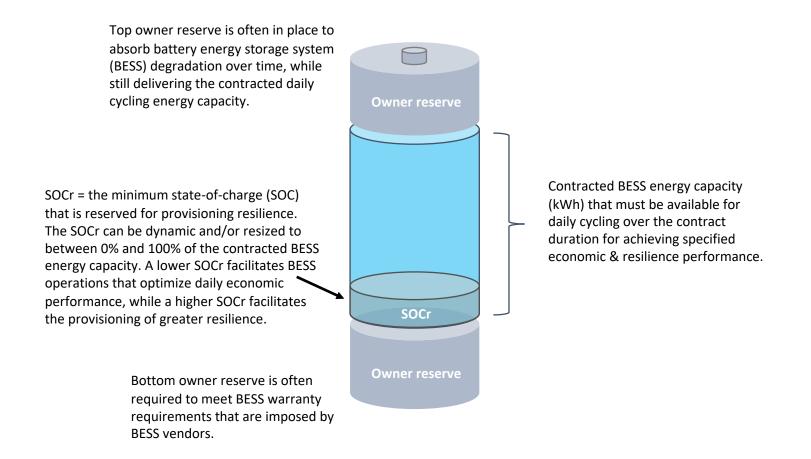
There are different VOR multipliers for each of the three load tiers. The following valuation ranges are typical for most sites:

- **Tier 1**: 100% resilience is worth 3 times the average price paid for electricity. In other words, indefinite energy resilience for critical loads is worth 3 times the average price paid for electricity. Given that the typical facility has a Tier 1 load that is about 10% of the total load, applying the 3x VOR Tier 1 multiplier warrants a 20% adder to the electricity bill.
- Tier 2: 80% resilience is worth 1.5 times the normal price paid for electricity. In other words, energy resilience that is provisioned at least 80% of the time for priority loads is worth 1.5 times the average price paid for electricity. Given that the typical facility has a Tier 2 load that is about 15% of the total load, applying the 1.5x VOR Tier 2 multiplier warrants a 7.5% adder to the electricity bill.
- **Tier 3**: Although a standard-size Solar Microgrid can provide backup power to Tier 3 loads a substantial percentage of the time, Tier 3 loads are by definition discretionary, and therefore, a Tier 3 VOR multiplier is negligible and assumed to be zero.


Taken together, the Tier 1 and Tier 2 premiums for a standard load tiering situation yields an effective VOR of between 25% and 30%. Hence, the **Clean Coalition uses 25% as the typical VOR123 adder that a site should be willing to pay**, including for indefinite renewables-driven backup power to critical loads — along with renewables-driven backup for the rest of the loads for significant percentages of time.

### Load Management is fundamental to VOR123




Although there are multiple potential Load Management configurations, the minimal functionality anticipated to be cost-effectively implemented is referred to as **the Critical Load Panel (CLP) approach**.

The CLP name reflects the requirement for a smart critical load panel that maintains Tier 1 loads indefinitely and toggles Tier 2 loads. In the CLP approach, Tier 3 loads will be toggled as a group by toggling power to the Main Service Board (MSB). Figure 9 illustrates the CLP approach for SMHS, with Tier 1 and Tier 2 loads being served by new dedicated wire runs that connect to a new smart critical load panel.



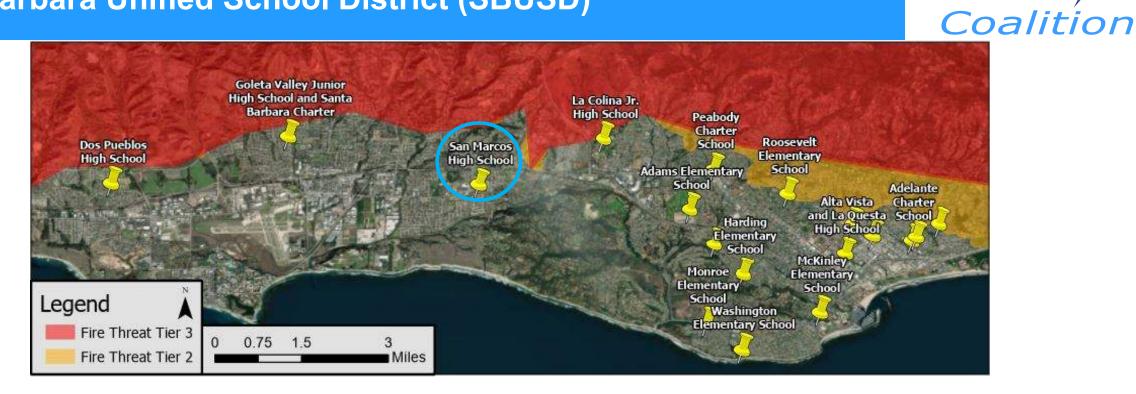
#### **Batteries optimized for economics & resilience**







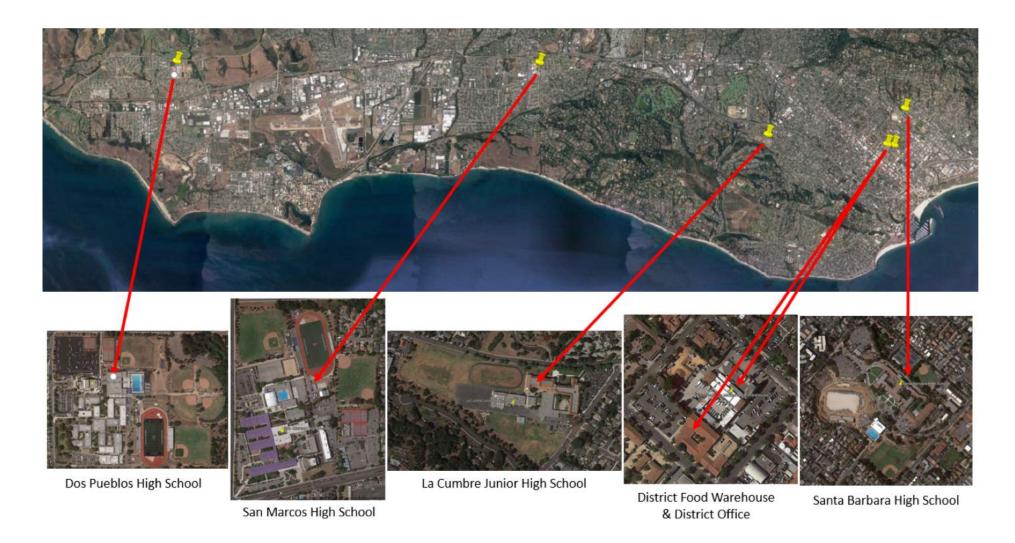
## Santa Barbara Unified School District (SBUSD) Solar Microgrids case study


## SMHS is vulnerable to long transmission outages





- SMHS is located in the middle of one of the most grid-vulnerable regions in California: the **Goleta Load Pocket (GLP).**
- The GLP spans 70 miles of California coastline, from Point Conception to Lake Casitas, encompassing the cities of Goleta, Santa Barbara (including Montecito), and Carpinteria.
- The GLP is served by a single 40-mile transmission line routed through mountainous and disaster-prone terrain.
- Southern California Edison (SCE) has identified the GLP's transmission path as being vulnerable to catastrophic failure from fire, earthquake, and/or landslides that could cause a crippling, extended blackouts of weeks or even months in duration.


## Santa Barbara Unified School District (SBUSD)



- The entire Santa Barbara region is surrounded by extreme fire risk (earthquake & landslide risk too) and is extremely vulnerable to electricity grid outages.
- The SBUSD is a major school district that increasingly recognizes the value-of-resilience (VOR) and has embraced the Clean Coalition's vision to implement Solar Microgrids at a number of its key schools and other critical facilities.
- SMHS is in the middle of the extensive SBUSD service area.

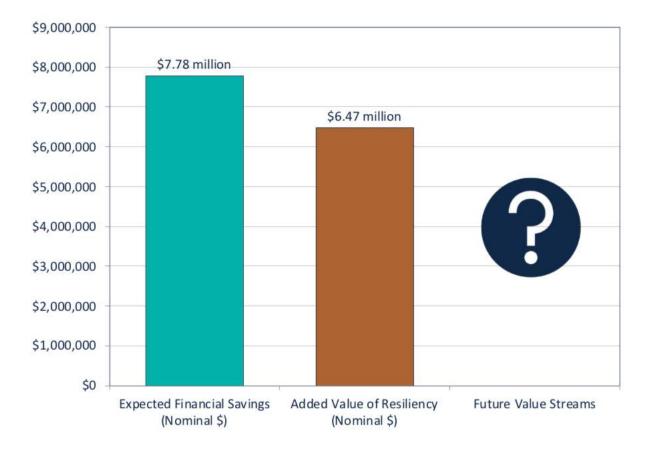
Clean /





## **SBUSD unanimously approves Solar Microgrids**




After a comprehensive feasibility study and a state-of-the-art Request for Proposal (RFP) process, on 22 September 2020, the SBUSD Board approved moving forward with the Solar Microgrids:

- 100% for Tier 1 loads (critical loads), 80% resilience for Tier 2 loads (priority loads), and about 25% resilience for Tier 3 loads (all remaining loads, which are totally discretionary).
- Millions of dollars in economic benefits via a 28-year Power Purchase Agreement (PPA) and millions more in value-of-resilience (VOR), for free.
- In addition to the six Solar Microgrids, eight additional schools will be getting solar parking canopies, enough to approximately net zero in all cases.

## **Guaranteed SBUSD bill savings and free VOR**

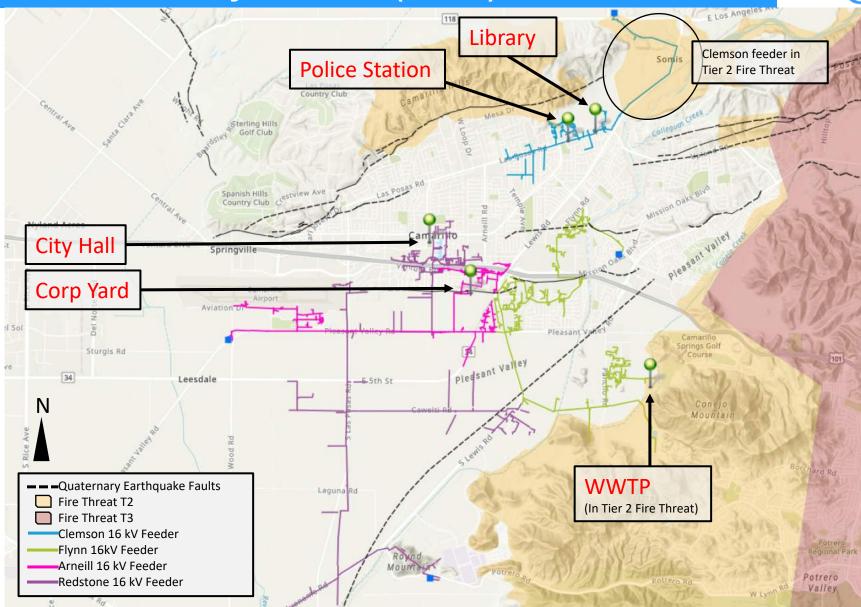


Lifetime (28-year) Bill Savings and Added Value of Resiliency





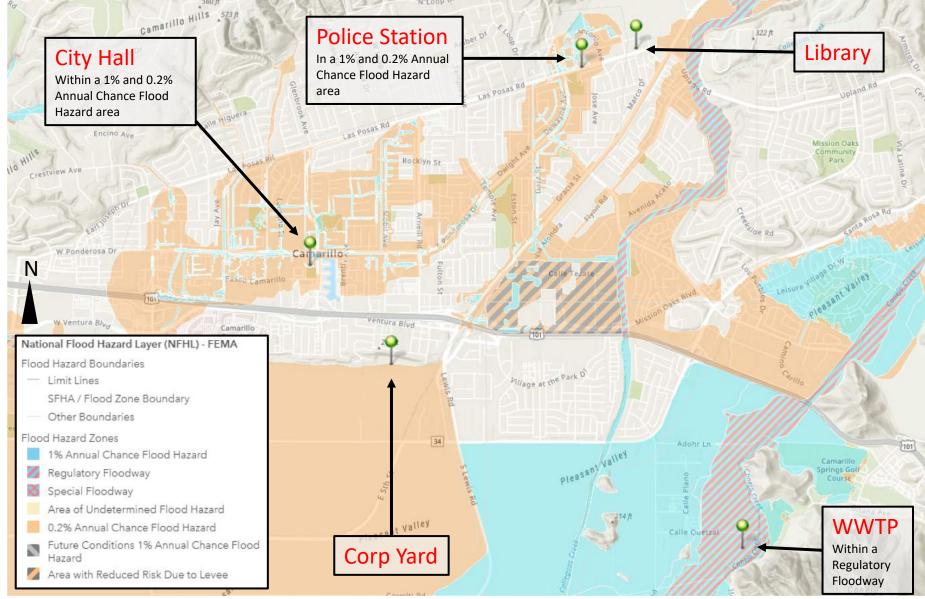
## City of Camarillo feasibility study


## **Camarillo feasibility study sites & constraints**



- Determine the critical electrical needs for each site during a power outage, including business continuity for the following sites:
  - $\circ$  City Hall
  - $\circ$  Corp Yard
  - $\circ$  Library
  - Police Station
  - WWTP
- Provide recommendations for a standby power system that meets the City's environmental, economic, and resilience goals.
- Analyze system power rating for 150% of the average daily use and meet peak demand.
- Analyze a system capable of serving the building loads through 120-hours (5 days) of outage.
- Recommend an optimal microgrid standby system that strengthens resiliency and is financially feasible.

## Fire & earthquake risk to Camarillo critical community facilities (CCFs)


## **Clean** Coalition



Making Clean Local Energy Accessible Now

## **Flood risk to Camarillo CCFs**

## **Clean** Coalition



Making Clean Local Energy Accessible Now

#### **Description of scenarios, resources, and load served**



| Site      | Scenarios            | Resources            | Load served                                                                         |
|-----------|----------------------|----------------------|-------------------------------------------------------------------------------------|
| City Hall | Solar+Storage        | Solar+Storage        | 150% of average daily load Indefinite                                               |
|           | Storage Only         | Storage Only         | 150% of average daily load for 5 days                                               |
|           | Diesel Only          | Diesel Only          | 150% of average daily load for 5 days                                               |
|           | Solar+Storage+Diesel | Solar+Storage+Diesel | 150% of average daily load for 5 days or<br>19.6% of average daily loads indefinite |
| Corp Yard | Solar+Storage        | Solar+Storage        | 150% of average daily load Indefinite                                               |
|           | Storage Only         | Storage Only         | 150% of average daily load for 5 days                                               |
|           | Diesel Only          | Diesel Only          | 150% of average daily load for 5 days                                               |
|           | Solar+Storage+Diesel | Solar+Storage+Diesel | 150% of average daily load for 5 days or<br>16.0% of average daily loads indefinite |
|           | Solar+Storage        | Solar+Storage        | 150% of average daily load Indefinite                                               |
|           | Storage Only         | Storage Only         | 150% of average daily load for 5 days                                               |
| Library   | Diesel Only          | Diesel Only          | 150% of average daily load for 5 days                                               |
|           | Solar+Storage+Diesel | Solar+Storage+Diesel | 150% of average daily load for 5 days or 21.8% of average daily loads indefinite    |
|           | Solar+Storage        | Solar+Storage        | 150% of average daily load Indefinite                                               |
| Dalias    | Storage Only         | Storage Only         | 150% of average daily load for 5 days                                               |
| Police    | Diesel Only          | Diesel Only          | 150% of average daily load for 5 days                                               |
| Station — | Solar+Storage+Diesel | Solar+Storage+Diesel | 150% of average daily load for 5 days or 25.4% of average daily loads indefinite    |
|           | Solar+Storage        | Solar+Storage        | 150% of average daily load Indefinite                                               |
|           | Storage Only         | Storage Only         | 150% of average daily load for 5 days                                               |
| WWTP      | Diesel Only          | Diesel Only          | 150% of average daily load for 5 days                                               |
|           | Solar+Storage+Diesel | Solar+Storage+Diesel | 150% of average daily load for 5 days or<br>18.4% of average daily loads indefinite |

Note: Solar+Storage is oversized to cover loads for full 120 hours during worst solar period. Solar+Storage+Diesel is sized to ZNE solar and 1-2 hour storage.

### **City Hall Load 150% indefinite Resource: Solar+Storage**

# **Clean** Coalition



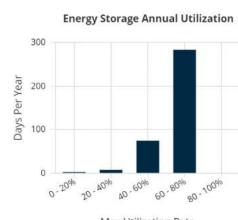
20-40%

400

300

100

0 0-20%


Days Per Year 200

Solar:

#### City Hall Load 150% for 5 days or 19.6% indefinite. **Resource: Solar+Storage+Diesel**







Max Utilization Rate

Solar:

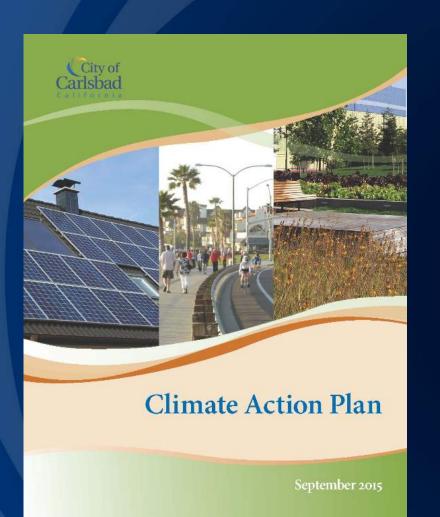
Diesel:

CapEx:

Storage:






Economic assumptions:

- discount rate of 3%
- annual utility rate escalation of 3%

City of Carlsbad Emergency Services Advanced Microgrid 2020 SEEC Virtual Forum Sept. 29, 2020



- 118,000 population
- North coastal San Diego County
- Sustainability Community Vision Core Value



# **Climate Action Plan**

- GHG reduction measures:
  - Energy efficiency
  - Photovoltaic systems
  - Electric vehicle charging
- Municipal energy consumption goals
- No adaptation policies

## SANDAG Energy Roadmap

- Service of San Diego Association of Governments
- Program assists cities with CAP implementation
   Reduce municipal facility energy consumption
- Carlsbad Roadmap customized to include microgrid feasibility study for city's Safety and Service Complex

# **Carlsbad Safety and Service Complex**

One contiguous site under city ownership - campus components:



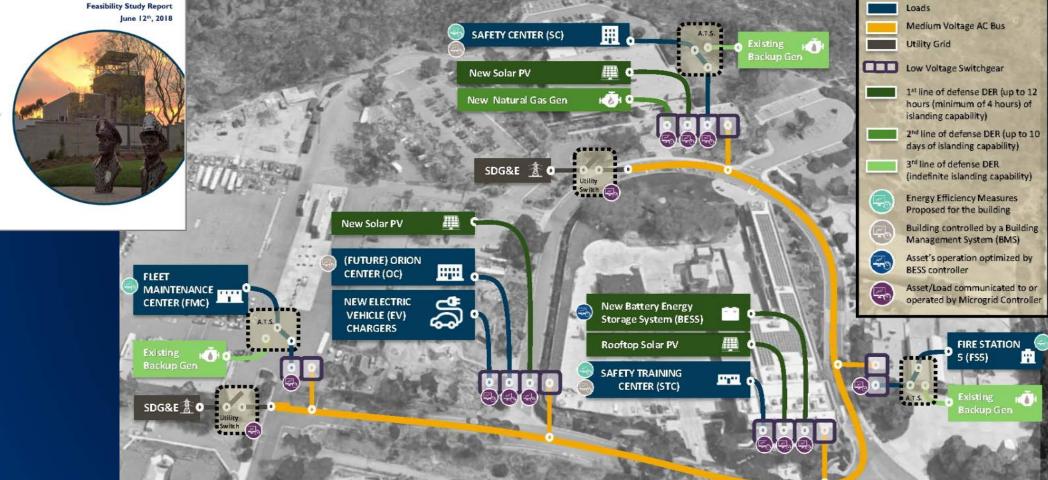
Fire and Police headquarters



**Emergency Operations Center** 



Safety Training Center (field hospital)




Fleet operations and fueling



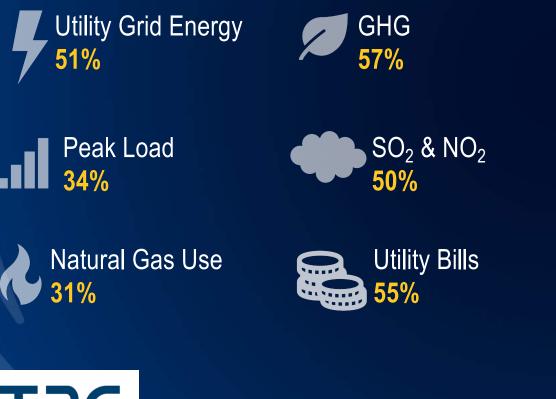
Largest fire station

# Microgrid Capabilities



**Integrated Demand Side Management** (IDSM)-Focused Microgrid Feasibility Study

City of Carlsbad Public Safety and Service Complex


THE Solutions, inc 17911 Von Karman Avenue, Suite 400, Irvini, C& 92614 Ramon VII-Prous Katie P. Wilson Sharanjay Marigalekar, F.E. (949) 727-7312 nylprous@Incsolutions.co

Prepared by >TRC

City of Carlsbad

EXHIBIT 2

## **Energy Savings and Reduced Environmental & Economic Impacts**



# **Benefits and Costs**

#### **Additional Benefits:**

- Improved Energy Resiliency and Reliability
- Improved Cybersecurity
- Support Clean Energy Market Transformation
- Show City's Commitment to the CEC and 2030 **Climate & Energy Goals**
- Additional Community and Societal Benefits



## **Project Cost**

- **Financing solutions**
- **Cost-saving design alternatives**

**\$6,698,359** over 15 years

# Project Challenges

### Major changes in city leadership

### Lack of funding

- California Energy Commission grant
- Capital Improvement Program (CIP)
- Energy Service Company (ESCO)

Time lag since study presentation

# **Project Strategies and Opportunities**

- IMPLEMENT project components through existing CIP new construction and renovations
- UPDATE project design
  - Cost reductions such as SDG&E line
  - New technologies such as vehicle-to-grid
- LEVERAGE new design technologies to pursue grants
- KEEP ASKING and MAINTAIN enthusiasm



## Redwood Coast Airport Renewable Energy Microgrid

# Local government and an IOU advancing a resilient and clean energy future

SEEC Virtual Forum – Sept. 29, 2020

Jim Zoellick (jimz@humboldt.edu), Principal Engineer Schatz Energy Research Center, Humboldt State University







© September 2020 | schatzcenter.org



### Key Highlights of the RCAM project

- Local government leading the way
- DERs and microgrids in our local communities
- Supporting vulnerable populations
- Demonstrating the value of partnerships
- Cutting edge project with focus on replication



Source: TrinidadMike



**INCREASING NEED FOR RESILIENCY** 

around critical facilities due to climate change impacts

RCAM



IOUs TRANSITIONING to the sustainable smart grid of the future

**CCA / LOCAL GOVERNMENT** generation and storage projects



Redwood Coast Airport Renewable Energy Microgrid | September 2020

#### Redwood Coast Airport Renewable Energy Microgrid | September 2020

# Project Objectives

#### **Community Benefits**

- Provide resilience to critical community services in the face of climate change
- Provide local benefits via renewable energy development (create jobs, keep energy \$\$\$ local, increase energy security, reduce price volatility, increase local control & ownership)
- Reduce greenhouse gas emissions

#### **Ratepayer Benefits**

- Demonstrate a viable, replicable business model for a 100% renewable community scale microgrid
- Develop agreements, standards and processes for replicability
- Advance technology and policy through cutting edge public research







### Key Project Partners

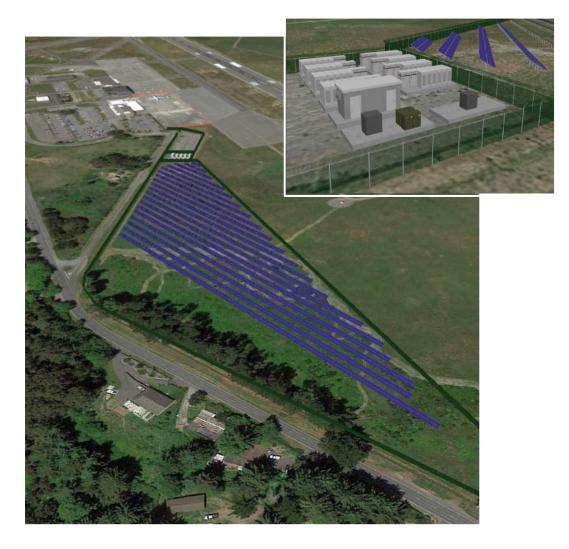
- Schatz Energy Research Center: prime contractor & technology integrator
- Redwood Coast Energy Authority: local CCA, distributed generation owner & co-funder
- Pacific Gas & Electric: distribution system operator
- CEC and PG&E Electric Program Investment Charge (EPIC): grant funders
- County of Humboldt: airport owner/operator
- TRC Companies → business case evaluation, cybersecurity
- Key vendors: Tesla → PV/battery,
  Schweitzer Engr. Labs (SEL) → controls





Schatz

:nergy Research


#### HUMBOLDT STATE UNIVERSITY



### **Project Description**



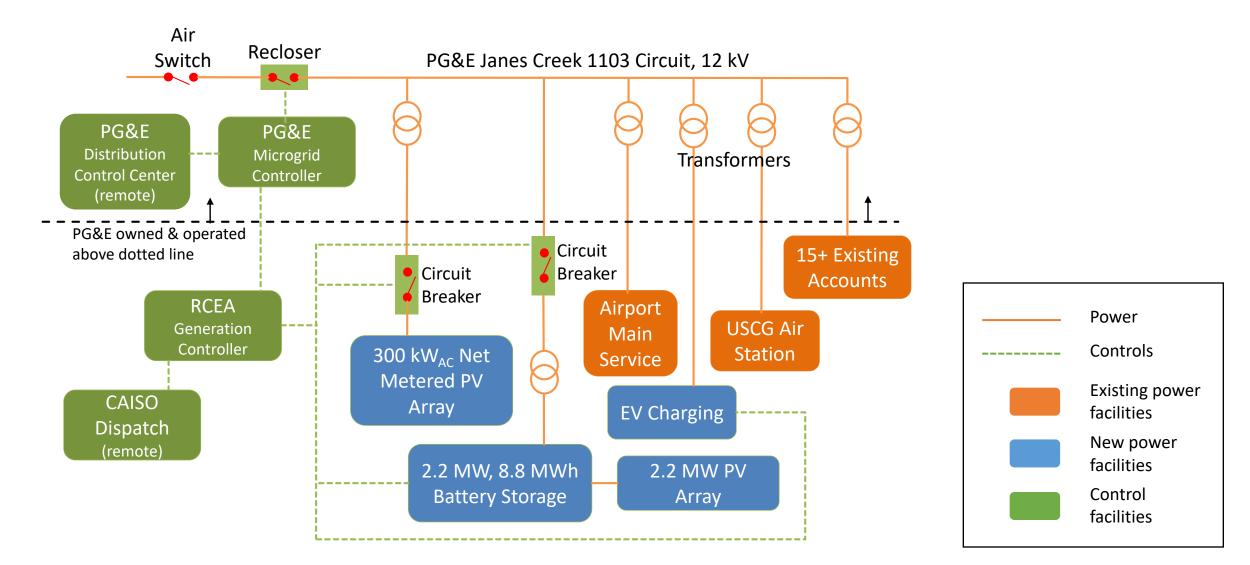
- First front-of-meter, multi-customer microgrid on PG&E's system
- 2.2 MW PV array DC-coupled to 2.2 MW/8.8 MWh battery storage → CAISO wholesale market participation
- 300 kW<sub>AC</sub> net-metered PV array → reduce airport electric bills
- Microgrid controllers → will allow the system to island and provide uninterruptible power for long periods



### **Grid-connected Mode**

- RCEA (3<sup>rd</sup> party) will control generation asset, participate in wholesale market → energy arbitrage
- Wholesale interconnection constrained to 1,480 kW max import and 1,778 kW max export to mitigate otherwise required distribution system upgrades

### **Islanded Mode**


 PG&E as distribution system operator (DSO) will control generation asset





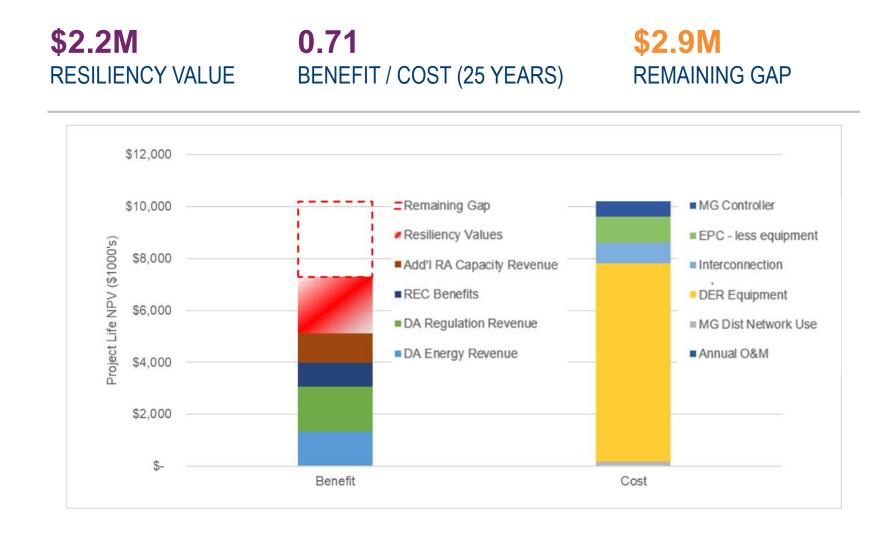
### Simplified 1-Line Diagram





Redwood Coast Airport Renewable Energy Microgrid | September 2020

- Unique partnership between an IOU and a CCA
- CCA will own and operate DERs that will form the islanded microgrid on IOU's distribution circuit, this requires special attention
- Areas of collaboration include:
  - Design → must be safe, reliable and functional and must seamlessly mesh with the existing distribution system
  - Development of contractual agreements
    - RCAM Microgrid Operating Agreement
- Focus is to develop necessary agreements for RCAM project within existing regulatory framework with eye toward future replication potential














#### **Costs and Benefits**

- Costs (actual and estimated)
- Wholesale market revenue (TEA, NREL)
- Resiliency value (TRC modeling)
  - Loss of service & revenue
  - Loss productive time (worker GDP)
  - Customer interruption cost
  - Determined using accepted models (FEMA Benefit-Cost Analysis Re-engineering methodology, Interruption Cost Estimate Calculator)
- Remaining gap made up by many additional benefits (added resilience, job creation, local energy control)

### Questions?

Email: jimz@humboldt.edu

Redwood Coast Airport Renewable Energy Microgrid | September 2020

# Upcoming Events

Learn more and register at: <u>californiaseec.org/2020-forum/</u>



californiaSEEC.org

10/7 – Webinar 14 Strategic Planning for a Clean Energy Future: How to Phase, Scale & Finance Smart Cities Solutions

10/15 - Webinar 15: Keeping the Focus Local: A Conversation with SoCalREN Regional Partnerships

10/27 - Webinar 16: 2020 Virtual Beacon Award Ceremony

11/4 - Webinar 17: Mapping Energy Efficiency, Climate Planning, and Regional Partnerships

11/12 - Webinar 18: One Vision, Many Policy Paths to Local Decarbonization

### Thank you to...

#### Our sponsors for making this series possible!



**Pacific Gas and Electric Company**<sup>®</sup>







Southern California





#### Our promotional partners for extending our reach!

