

SEEC Virtual Forum: Webinar 7 August 4, 2020 | 1:00 – 2:30 PM PST

Resources for Continuing Climate Action

Google

Thank you to...

Our sponsors for making this series possible!

Pacific Gas and Electric Company®

Our promotional partners for extending our reach!

Upcoming Events

Learn more and register at: californiaseec.org/2020-forum/

californiaSEEC.org

- 8/12 Webinar 8 Building Decarbonization Policy Tools for California Local Governments
- 8/20 Webinar 9 Maximizing Value of Resiliency Programs: Case Study & Resources
- 8/25 Networking Activity 3 Pictionary: Climate and Energy Edition!

9/1 – Webinar 10 Building Decarbonization Full Throttle: CPUC Updates and Regional Implementation

9/9 - Webinar 11 Not Your Grandma's Regulatory Update

9/17 – Webinar 12 State-Administered, Utility-Supported Financing for Energy Efficiency Retrofits

Join the SEEC Peer-to-Peer Network on LinkedIn!

Use this group to connect with other professionals, whether it be for project support or professional development reasons!

Find us at https://www.linkedin.com/groups/8956010/

Q&A

- Submit questions for panelists through the Q&A module at any point during the webinar.
- Upvote questions that you are interested in hearing responses to.

Chat

- Engage in a dialogue with your peers share resources, case studies, and best practices
- Reach out to LGC staff if you encounter technical issues or have questions about the SEEC Forum.

californiaSEEC.org/2020-forun

Calyn Hart Program Officer ICLEI – Local Governments for Sustainability USA

Nicole Lombardo

Business Development & Partnerships Google – Environmental Insights

ICLEI is the leading local government network dedicated to sustainability and climate action. For 30 years, we've represented the voice of cities and counties on the global stage.

CLIMATE SUMMIT OF LOCAL AND REGIONAL LEADERS

How we work Five Pathways

•I.C L E I Local Governments for Sustainability

Agenda

- 1. ClearPath Modules Overview
- 2. Google Environmental Insites Explorer
- 3. ClearPath + EIE Integration
- 4. Contribution Analysis
- 5. SEEC Sunsetting

ClearPath tool

User-friendly interface with easy data entry and calculators

Online, "Cloud-Based" Application

Collaboration supported w/ multiple users per jurisdiction and multiple jurisdictions per user

Secure data storage with daily backups Remote support and training curriculum with data collection templates

Track progress over time

Constant development mode

Governments for Sustainability

Inventory Module

 Manage emissions across Local Governments and Community tracks with Protocol reporting standards

Inventory Module

• I.C L E I Local Governments for Sustainability

Community Scale | Inventories

Inventories Forecasts Planning Monitoring Factor Sets Reports

Jurisdiction: MikeVille 🕶

2012 Mikeville Community-wide GHG Inventory [DEMO] Edit Parameters

Residential Energy	Commercial Energy	Industrial Energy	Transportation & Mobile Sources	Solid Waste	Water & Wastewater	AFOLU	Process & Fugitive Emissions	Upstream Impacts of Activities	Consumption Based
--------------------	-------------------	-------------------	------------------------------------	-------------	--------------------	-------	---------------------------------	-----------------------------------	-------------------

Available Calculators

Pick a calculator to enter a new record.

- Emissions from Grid Electricity ③
- Emissions from Stationary Fuel Combustion ③

Inventory Records For Residential Energy

Residential Natural Gas Consumption	Edit Delete
Residential Fuel Oil Consumption	Edit Delete
Test CDCMC Kerosene Entry	Edit Delete
Residential Electricity Consumption	Edit Delete
Marysville Test PG&E Data	Edit Delete

Basic Emissions Calculations

Activity Data X Emissions Factor

= Emissions Estimate

Activity Data

E.g. electricity consumption (kWh)

Emissions Factor

E.g. CO₂ emissions/kWh consumed

Electricity Emission Factor

• 630.89 lbs of CO2 per MWh

Inventory Calculators

Linked Data from Factor Sets

Record Inputs

Outputs calculated on-the-fly as you add data.

Inventory Protocols

Sources covered

Forecasting Emissions

- Emissions forecast = Emissions trend Business As Usual (BAU)
- What is BAU from the local perspective?
 - Activity * Emissions Factor/Intensity = Emissions
- Federal and State Policy set the conditions in which local actions take place and are more likely to be changing the carbon intensity of an activity.

ClearPath Design Solutions

• Every inventory calculator has a "forecastable output" of the primary activity data.

Name	Value	
Energy Equivalent (MMBtu) 📀	0	
CO2 (MT)	0	
CH4 (MT)	0	
N2O (MT)	0	
CO2e (MT) 🕐	0	
Biogenic CO2 (MT) 🔞	0	

- Granularity at the level of Calculators
 - Fuel Types & Options within Calculators
- New Forecasts Summarize all records along these divisions for start point values

Summarized Inventory Outputs

Inventory Output		Starting Value	Coefficients	Growth Rates	
	Quantity	507421	Growth Rate	High Growth Scenario	
Electricity Energy Equivalent (MMBtu)	CO2e	16146	Carbon Intensity Factor	RPS Scenario 1	
	Quantity	1252050			
Natural Gas - Energy Equivalent (MMBtu)		66554	Growth Rate	Slow N Steady	
	COZe				

Quantity = Primary Activity Data

CO2e = All emissions associated with that output

Static Forecasts – Ratio of Activity : Emissions is Constant Dynamic Forecasts – Variable Carbon Intensity

Both use Compound Annual Growth Rates to represent change

BAU Forecast

🔵 Gasoline – On Road VMT 🛛 🌒 Diesel – On Road VMT 🛛 🔴 Electric – On Road VMT

40k

30k

ZOk

10k

2005

100k

75k

50k

25k

Ð 2005

CO2e (metric tons)

CO2e (metric tor

2040

2045

Projected CO2e values 200k CO2e (metric tons) 100k 2010 2015 2025 2030 2035 2040 2045 🔵 Electricity Energy Equivalent (MMBtu) 🛛 🔵 Natural Gas – Energy Equivalent (MMBtu) Projected CO2e values 0 2005 2015 2020 2025 2030 2035 2010 **Commercial Energy** Solid Waste Residential Energy Transportation & Mobile Sources — Original Forecast -- Long Term Reduction Goal -- Mid-Term Reduction Goal 2010 2045 Short Term Reduction Goal -

Projected CO2e Values With Reductions Applied

Planning Module

Projected CO2e Values With Reductions Applied

Developing CAP strategies

Specific strategies for each sector

E.g. LED lights, Solar panel installation, Bike Infrastructure etc.

Available Calculators

Pick a calculator to enter a new record.

- User Defined Residential Energy ③
- Increased Residential Solar Photovoltaic ③
- Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: Increased Commercial Solar Photovoltaic
 Image: I
- Residential Energy Efficiency Education ③
- Low Flow Faucets ③
- User Defined Commercial Energy ③
- Increased Residential Solar Thermal (2)
- Low Flow Showerheads ③
- Low Income Weatherization Programs ③

- Filter Calculators Categories Deselect All Commercial Energy Consumption Based Consumption Based Consumption Based Residential Energy Residential Energy Solid Waste Consumption Consumption Based Consumption Consumption Consumption Consumption Consumption Based Consumption Consumption
- Sources
- o 📋 Upstream Impacts of Activities

High-level plan calculators

- Create and save different versions for each sector
 - E.g. high efficiency case; high renewables case
- Should apply only one copy for each sector at a time in a scenario
 - Otherwise, reductions may be overestimated

- Calculators have one or more outputs that connect to forecast series of Primary Activity Data
 - Ex. Energy Equivalent MMBtu Natural Gas
- Outputs from calculator record are subtracted from forecast total each year there is an additional reduction (as specified in Plan)
- Clearpath compares planning scenarios with your reduction targets

Planning Module

Projected CO2e Values With Reductions Applied

What the Monitoring Module Does

- Use monitoring records to track implementation of climate action plan measures.
- Use reports to view progress on all measures, and to help visualize and understand inventory changes.

Monitoring Records

	Value	Units
Implementation Status		
The inputs in the section will allow yo status of all the measures in your pla	ou to record details about the state of progress for this measurn.	ure in a way that allows easy reporting of the
Project Status ()	~	
Point Person (2)		
Next Steps (2)		10
		22162

Keeping track of individual measures

Financing

The inputs in this section will allow you to record details about how this action was financed and the total cost of the action. Cost data provided here will be used in the calculation of the cost effectiveness output below.

Capital Cost (?)		\$	•
O&M Cost		\$ / Year	•
Cost Savings ②		\$ / Year	•
Financing Type 🕐	· · · · · ·		
Financing Source 🕐			

Monitoring Records

Impacts Achieved

Use this section to provide the energy savings achieved through this action. Note that the impacts recorded should represent the annual reduction in energy use for the calendar year specified above.

Fuel Type (press ctrl for multiple) 🕐	Electricity Natural Gas LPG Propane	
Evaluation Details		
Finally, use the inputs in this section to provide a	s much information as possible about the approach used	to evaluate the impact of this action.
Savings Evaluation Approach (?)	~	
Impact Study Notes ②		

Monitoring Records

- Main outputs:
 - \circ CO2 reduced
 - Fuel reduced
 - Cost Effectiveness

Outputs

Name
Electricity Saved (MMBtu)
Electicity CO2e Reduced
Natural Gas Saved (MMBtu)
Natural Gas CO2e Reduced
Propane Saved (MMBtu)
Propane CO2e Reduced
LPG Saved (MMBtu)
LPG CO2e Reduced
Butane Saved (MMBtu)
Butane CO2e Reduced
Kerosene Saved (MMBtu)
Kerosene CO2e Reduced
Gasoline Saved (MMBtu)
Gasoline CO2e Reduced
Fuel Oil #2 Saved (MMBtu)
Fuel Oil #2 CO2e Reduced
Fuel Oil #5 Saved (MMBtu)
Fuel Oil #5 CO2e Reduced
Fuel Oil #6 Saved (MMBtu)
Fuel Oil # 6 CO2e Reduced
Wood Saved (MMBtu)
Wood CO2e Reduced
Cost Effectiveness (MTCO2e Reduced / \$)
Monitoring Reports

Home	About SEEC	Factor Sets	Inventories	Forecasts	Planning	Monitoring	Reports
Invento	ory Reports	8					

Use this page to open reports, advanced charts, and lists of coefficients used for calculating totals.

Name	Description	Inventory		Actions
Inventory By Scope	CO2e by scope for the selected inventory year.	1990 Start	•	View Export as CSV
Inventory By Activity / Source	CO2e by activity and source for the selected inventory year.	1990 Start	•	View Export as CSV
Inventory By Sector	CO2e by sector for the selected inventory year.	1990 Start	•	View Export as CSV
Detailed Report	Details of inventory records for selected inventory year.	1990 Start	•	View Export as CSV
Inventory Comparison By Activity/Source	Comparison of CO2e by activity/source and year over all official inventories			View Export as CSV
Inventory Comparison By Sector	Comparison of CO2e by sector and year over all official inventories			View Export as CSV

Monitoring Reports

Name	Description	Planning Scenario	Actions	
Implementation Progress	Comparison of Implementation of Monitoring Records to linked Reduction Measure Records	Select Planning Scenario •	View Export as CSV	
mplementation Efficacy	Comparison of CO2e reductions of Monitoring Records to linked Reduction Measure Records	Select Planning Scenario •	View Export as CSV	
mplementation Details	Detailed export of monitoring records		View Export as CSV	
mplementation Status	Export of status fields from monitoring records		View Export as CSV	
Projected to Actual Details	Comparison of all official inventories to the forecast, summarized by field.	Select Planning Scenario •	View Export as CSV	
Projected to Actual	Comparison of a single inventory to projected total for the same calendar year, summarized by	Select Planning Scenario	View Export as	
Summary	sector.	Select Inventory	CSV	
ndicator Report	Comparison of indicators by year across reporting tags		View Export as CSV	

Implementation Progress Report

Implementation Progress

Comparison of Implementation of Monitoring Records to linked Reduction Measure Records

		2014	2015
Title 24 Residential / Quantity of	Planned	800000.0	8000000.0
New or Renovated Building Space per year	Achieved	10000.0	15000.0
	Impact Gap	-7990000.0	-7985000.0

		2014	2016
Title 24 Commercial / Quantity of	Planned	15000000.0	1500000.0
New or Renovated Building Space per year	Achieved	1500000.0	0.0
	Impact Gap	-13500000.0	-15000000.0

		2016
Residential PV / Increased Solar	Planned	200.0
	Achieved	200.0
	Impact Gap	0.0

Implementation indicator—e.g. square footage, PV kW capacity

Implementation Efficacy Report

Implementation Efficacy

Comparison of CO2e reductions of Monitoring Records to linked Reduction Measure Records

		2014	2016
Title 24 Commercial / Annual	Planned	90077.0	90077.0
Electric Savings (MMBtu / Year) -	Achieved	3412.0	170600.0
Usage	Impact Gap	-86665.0	80523.0
		2014	2016
Title 24 Commercial / Annual	Planned	2670.1446664879795	2435.238689453699
Electric Savings (MMBtu / Year) -	Achieved	0.091441	5.0
.Oze	Impact Gap	-2670.0532254879795	-2430.238689453699
		2014	2016
title 24 Commercial / Annual	Planned	27000.0	27000.0
as Savings (MMBtu / Year) -	Achieved	11000.0	10000.0
Jsage	Impact Gap	-16000.0	-17000.0
		2014	2016
Fitle 24 Commercial / Annual	Planned	1435.1991412208909	1435.1991412208906
Gas Savings (MMBtu / Year) -	Achieved	588.0	534.0
CO2e	Impact Gap	-847.1991412208909	-901,1991412208906

Emissions result-CO2e reduction

Indicators Report

Record Name	Scope	Output Name	2005	2010
Residential electricity 92116		MMBtu per Household	3.0	4.0
Residential electricity 92116		CO2e per Household (MT)	0.22371	0.29523
Residential electricity 92116		MMBtu per Person	0.85324	0.66595
Residential electricity 92116		CO2e per Person (MT)	0.055928	0.056166
Residential electricity 92116		MMBtu per Household	3.0	3.0
Residential electricity 92116		CO2e per Household (MT)	0.22785	0.1696
Residential electricity 92116		MMBtu per Person	0.63993	0.0
Residential electricity 92116		CO2e per Person (MT)	0.056962	0.0

Changes in key indicators between inventories.

Reports

- Inventory Reports
- Monitoring Reports
- Forecasting and Planning Exports

[Jurisdiction] Climate Action Plan

Local Actions and Policies to Reduce [Jurisdiction]'s Greenhouse Gas Emissions

Approved by (Local Authority) (Date Approved) (Reference to Public Record) (Reference to Further Information) Produced by (Name of Lead Department or Task Force) Through partnership with ICLEI - Local Government for Sustainability (ICLEI)

Nicole Lombardo

Google

Environmental Insights Explorer

Fighting climate change with new data

At Google, we strive to build sustainability into everything we do

Our mission

Catalyze positive social and environmental impact at scale using Geo's understanding of the real world

Help deliver on sustainable and equitable outcomes

Data access is limited and costly

Google

≡ Environmental Insights Explorer

Measure, plan, and act to reduce emissions. Explore data to take informed action.

Q Find your city

Expanding data access to more cities this year.

💷 Request a city

In partnership with the Global Covenant of Mayors for Climate & Energy

63

366,000 Total tCO₂e per year

Explore and customize

Transportation emissions Google estimate

507,000 Total tCO₂e per year

Explore and customize

Rooftop solar potential Google estimate

242,000 Total tCO₂e per year Emissions reductions

II. Explore the data

01 Estimate building emissions
02 Measure annual transit activity
03 Identify CO₂ reduction opportunities
04 Capture air quality measurements

Mountain View > Building emissions ~

Building emissions

Google estimate

366,000

Source: Google Maps, based on size of buildings mapped within the platform.

Time period:

Annual value based on surveyed buildings in 2018.

Key assumptions:

Regionally estimated electricity and fuel consumption from the Climate Action for Urban Sustainability (CURB) tool are applied to mapped size by building type. Grid emissions factors are sourced from CURB or country-specific values where available...

Building emissions

Google Maps data can estimate how much energy buildings use and the resulting emissions

% of total building emissions

39% Residential @ 61% Non-residential

% of total measured area

8,100,000 m² | 17,700 total buildings

\$6% Residential \$44% Non-residential

. 🗆 <

Transportation emissions

507,000 Total ICOge per year

Google Maps uses aggregated location information from user trips to infer traffic, mode of travel, busyness, and total distances driven in a city. These are combined with an estimate of the types of vehicles and average fuel consumption of each mode.

Time period:

Source:

Total trips for year 2018.

Key assumptions:

Regionally estimated average fuel consumption and emissions from the Climate Action for Urban Sustainability (CURB) tool applied to all trips for each mode.

Transportation emissions

Location data from Google Maps can be used to measure annual transit activity, infer traffic modes, and estimate emissions

% of total transportation emissions

@ 47% Inbound @ 46% Outbound @ 7% In-boundary

% of total vehicle kilometers traveled

1,860,000,000 total kilometers

Mountain View > Rooftop solar potential ~

Rooftop solar potential

Google estimate

242,000

Existing solar arrays

1,003 Solar arrays Source:

Based on 98% data coverage over buildings in this geographic area. All estimates are based on buildings viable for solar panels.

Time period:

Annual value based on surveyed buildings in March 2018.

Key assumptions:

Included panels receive at least 75% of the maximum annual sun in the city. For Mountain View, the average value of the threshold is 1247.8 kWh/kW.

Energy offset

High resolution imagery and Al can accurately estimate the total rooftop solar potential to determine if renewable energy is a viable solution

0

1 1 <

6% Of total potential

Measure

Estimate your city's greenhouse gas (GHG) emissions

Plan

Run scenarios based on granular levels of data and adjustable inputs

Act

Inform mitigation goals and identify reduction opportunities

Track

Monitor progress in meeting climate protection goals

Measure + Plan + Act: Renewable energy

San Jose, California

San Jose set targets to be the world's first Gigawatt solar city based on Google's Project Sunroof data

Measure + Plan + Act: Renewable energy

Houston, Texas

EIE solar data used for city-wide solar technical assessment to design proposed 5M MwH target in plan.

Measure + Plan + Act: Renewable energy

Oallas, Texas

ElE data used to show city-wide solar technical potential to build confidence in in the city's ambition to be powered from 100% renewable sources.

Measure: GHG emissions

9 Mountain View, California

Mountain View plans to create parallel GHG inventory using EIE transport data for VMT and leveraging multi-modal data for planning purposes

۵ 📰 🖼 🌒

Measure + Plan + Act + Track: GHG emissions

Edmonton, Alberta

Through a partnership with the City of Edmonton and <u>MyHeat</u>, EIE data is being used to: (1) indicate thermal efficiency of local building stock, encouraging consumers to save energy; and (2) provide estimates of the electricity that could be generated from rooftop installations.

1,000+

Additional cities targeted with access in 2020

Insights Workspace

- 01 Test drive EIE data
- **02** Incorporate data into planning efforts
- **03** Share data across departments and the public

Sign up to request data:

insights.sustainability.google

EIE aims to lighten the burden of data collection associated with developing GHG inventories and local sustainability policy.

A data integration with the **ICLEI's ClearPath** tool makes Google data available for those cities that want to build a comprehensive community-scale inventory.

Google

Thank you

insights.sustainability.google

Nicole Lombardo Business Development nlombardo@google.com

ClearPath + EIE data integration

I.C.L.E.I Local Governments for Sustainability

Welcome to ClearPath, the new emissions management software suite from ICLEI-USA. Within this set of tools you will be able to manage energy and greenhouse gas emissions at both the local government operation and community scales.

To start, select either the Government Operations or Community track by clicking the bar above. For more information on how to use each of the ClearPath Modules, Please download and read the User Guides below

User Guides

Inventory, Forecast and Planning User Guide

Monitoring Module User Guide

Other Resources Government Buildings And Fleets Bulk Data Upload Template Existing Inventory GPC Conversion Guide

ClearPath + EIE data integration

Inventories

New Inventory

Name	Status	Official	Year
2013 Example			2013
2018 Inventory using Google EIE data	In Progress		2018
new	In Progress		2018
test inventory	In Progress		2013

Residential Energy	Commercial Energy	Industrial Energy	Transportation & Mobile Sources	Solid Waste	Water & Wastewater	AFOLU	Process & Fugitive Emissions	Upstream Impacts of Activities	Consumption Based
--------------------	-------------------	-------------------	------------------------------------	-------------	--------------------	-------	---------------------------------	-----------------------------------	-------------------

Available Calculators

Pick a calculator to enter a new record.

- Emissions from Grid Electricity ③
- Emissions from Stationary Fuel Combustion ③
- Notation Keys for Residential Energy 💿

Inventory Records For Residential Energy

Residential Electricity	Edit Delete
Residential Natural Gas	Edit Delete

Available Calculators

Pick a calculator to enter a new record.

- Active Transportation (indicator only) (2)
- On Road Transportation ③
- Emissions from Public Transit (2)
- Aviation Travel (?)
- Rail Transportation ③
- Water Transportation ③
- Emissions from Off Road Vehicles (?)
- Notation Keys for Transportation (2)

Inventory Records For Transportation & Mobile Sources

On Road vehicles - cross boundary outbound	Edit Delete
Walking - cross boundary inbound	Edit Delete
Walking - cross boundary outbound	Edit Delete
Bicycling - cross boundary outbound	Edit Delete
Bicycling - in boundary	Edit Delete
Rail - cross boundary outbound	Edit Delete
Rail - in boundary	Edit Delete
Bus VMT - cross boundary outbound	Edit Delete
Bus VMT - in boundary	Edit Delete
Subway - cross boundary inbound	Edit Delete
Subway - cross boundary outbound	Edit Delete
Subway - in boundary	Edit Delete
Bus VMT - cross boundary inbound	Edit Delete
On Road Vehicles - cross boundary inbound	Edit Delete
Rail - cross boundary inbound	Edit Delete
On Road Vehicles - within boundary	Edit Delete
Walking- within boundary	Edit Delete
Bicycling - cross boundary inbound	Edit Delete

Input Data

Use the following fields to complete the record

VMT ②	768716024	Annual VMT 🗸
Percent Motorcycles ③		%
Percent Passenger Vehicles ③	100	%. ~
Percent Light Trucks ⑦		%
Percent Heavy Tucks 🕐		%

ClearPath + EIE data integration

CO2e By Category

ICLEI Local Governments for Sustainability

 \equiv

Measurement of emissions is great, but...

- What is driving the total emission changes?
 - Cleaner Grid?
 - More Efficient Vehicles?
 - Local Action?
- Can we better understand inventories to help us develop more effective and efficient climate policies?
- Can we show we are making progress even if total emissions are increasing?

Contribution Analysis tool

Contribution analysis identifies how various factors contribute to changes in emissions seen between two GHG inventories. These factors may include:

- External factors such as weather and population growth
- Changes in emissions factors
- Impact of state or federal policy and programs
- Impact of local policy and programs

By isolating external factors, the framework should support more informed target-setting, policy-making, and communications

Model Inputs

Sector		Inputs needed
General Info		Population, number of households, per capita GDP, commercial building ft ² or total employment within jurisdiction
Inventory	Residential Electricity	Total emissions, total kWh usage, monthly kWh data
	Commercial Electricity	Total emissions, total kWh usage, monthly kWh data
	Residential Natural Gas	Total emissions, total therms usage, monthly therms data
	Commercial Natural Gas	Total emissions, total therms usage, monthly therms data
	On-Road Transportation	Total on-road emissions, total on-road vehicle miles traveled (VMT) or total gallons of fuel
	Solid Waste	Total landfill disposal, waste composition breakdown for each inventory year*
	Other Sectors*	Residential/commercial fuel use (propane, heating oil), industrial electricity/natural gas, off-road transportation, wastewater treatment
Daily weather input		Daily min, max, and average temperatures

* Optional data
Program Inputs (Optional)

	Aspen			
e name fo	or each program, and enter	either activity reductions OR er	nissions reductions, depend	ing on the data

Reductions should be entered as a positive number.

Program Inputs

This tab is optional. Enter the

Residential Electricity Programs-kWh reduct	ion	A	W
Program Name			0
kWh savings in Year 2 compared to Year 1			
Data source			

Residential Electricity ProgramsEmissions	nissions reduction already calculated		
Program Name			
Emissions Reduction (MTCO2e)			
Data Source			

Commercial Electricity ProgramskWh redu	ction	
Program Name		
kWh savings in Year 2 compared to Year 1		
Data source		

Commercial Electricity ProgramsEmission	s reduction already calculate	ed	
Program Name			
Emissions Reduction (MTCO2e)			
Data Source			

• Either emissions data or activity data is acceptable

Visuals

Visual Outputs

- Several different visual options: top drivers, detailed summary, quick summary, sector breakdowns
- Red for emissions increase, blue for emissions decrease

Hayward: Analysis 2010-2015

Aspen: Visualizing Data in CAP

Figure 2. Community-wide GHGs are likely to grow between now and 2050 if the current level of climate action in Aspen continues. On the other hand, if efforts increase dramatically and all objectives in the GHG Reduction Toolkit are achieved, Aspen could get very close to reaching its 2050 goal.

- Wedges are net changes by sector and do not go deeper into contribution analysis
- Aligned with GHG Reduction Toolkit for CAP implementation

The key findings from this analysis are:

- Both a cleaner electric grid and energy efficiency have important roles to play to offset growth and reduce emissions from commercial and residential electricity. State-level policies advancing renewable energy, combined with local, utility, business and individual action for energy efficiency can overcome growth and drive significant emissions reductions.
- State energy efficiency policies have a noticeable effect on changes in commercial energy usage. Local governments in states with a high energy efficiency policy score¹ show per-employee energy use decreasing more rapidly than those in lower-scoring states. This relationship was not found for residential energy use; more research is needed to determine why not.
- 3. Both more efficient vehicles and reduced vehicle miles per person have important roles to play to offset growth and reduce emissions from on-road transportation. In a majority of communities analyzed, improvements in vehicle fuel efficiency and reductions in vehicle miles per person are sufficient together to reduce emissions despite population growth.
- 4. Transportation emissions are more challenging than electricity emissions and more work is needed. While the overall trend is in the right direction, transportation emissions are not decreasing as rapidly as those from electricity, and emissions are still increasing for 37% of communities. More work is needed to address both vehicle miles per person and vehicle fuel efficiency or fuel switching.

Based on a 2018 decision from the California Public Utilities Commission, which requires the IOUs to adhere to a more stringent total cost recovery test, the IOUs will no longer provide SEEC financial support after 2020.

ICLEI Membership

Local Governments for Sustainability

Continue ClearPath access with additional benefits through ICLEI Membership (California)

- 1. Traditional ICLEI Membership
 - 1. Cities/Counties

Membership Dues for Cities or Counties

Population	Dues
1 - 50,000	\$600
50,001 - 100,000	\$1,200
00,001 - 200,000	\$1,750
200,001 - 300,000	\$2,250
300,001 - 500,000	\$2,750
500,001 - 750,000	\$3,500
750,001 - 1,000,000	\$4,500
1,000,001 - 2,000,000	\$5,750
2,000,001 - 4,000,000	\$7,000
> 4,00,000	\$8,000

- 1. Regional Affiliate (intake form)
 - Potential Regional Affiliates: councils of government; air quality districts; larger counties; nonprofits, Regional Energy Networks, and Beacon champions are potential partners – please contact Angie Fyfe to discuss partnerships.

Dues for Regional Affiliates

Operating Budget	Dues
< \$750,000	\$2,500
\$750,000 - \$ 1.5M	\$3,000
\$1.5M – \$3M	\$4,000
\$3M - \$5M	\$5,500
\$5M - \$7.5M	\$6,500
\$7.5M - \$10M	\$8,000
> \$10M	\$9,500

Contact Kale Roberts at Kale.Roberts@iclei.org to discuss joining ICLEI

Thank you!

Calyn Hart ICLEI USA <u>calyn.hart@iclei.org</u> Nicole Lombarbdo Google Environmental Insights <u>nlombardo@google.com</u>

Thank you to...

Our sponsors for making this series possible!

Pacific Gas and Electric Company®

Our promotional partners for extending our reach!

